menu-icon
Conferenza | 03 luglio 2024

Decomposing knotted objects in 3D

Brescia

Interviene
Yi-Sheng Wang, National Sun Yat-sen University, Taiwan

Introduce
Maurizio Paolini, Università Cattolica del Sacro Cuore

Abstract
A natural way to analyze a complicated object is by decomposing it into simpler pieces. A fundamental result in knot theory by Schubert states that every knot, a knotted circle in 3D, can be factorized into prime knots in a unique way, a reminiscence of the prime factorization of positive integers.
The result has profound influence in knot theory development, and has been generalized to other knotted objects, for instance, spatial graphs and handlebodies. We first review some known decomposition results along these lines and their applications on knot symmetry and recognition. Then we discuss how one can uniquely decompose a handlebody-knot by 2-spheres meeting the handlebody in three disks, a joint work with G. Bellettini and M. Paolini; its applications to a recent project with G. Bellettini, G. Paolini and M. Paolini are also presented.

Nome file
Locandina Decomposing knotted objects in 3D.pdf
Dimensione
204 KB
Formato
application/pdf
Locandina
Partecipa in Teams
scroll-top-icon