Floor management

- Direct impact on growth, yield and grape composition
- Direct impact on the vineyard ecosystem (soil health, biodiversity, erosion)
- Direct impact on production costs

Which crops to associate with grapevines?

Improvements on monocrops?

Mechanical weeding

Chemical weeding

Which crops to associate with grapevines?

Grow grass in the inter-rows?

Grass

Natural cover

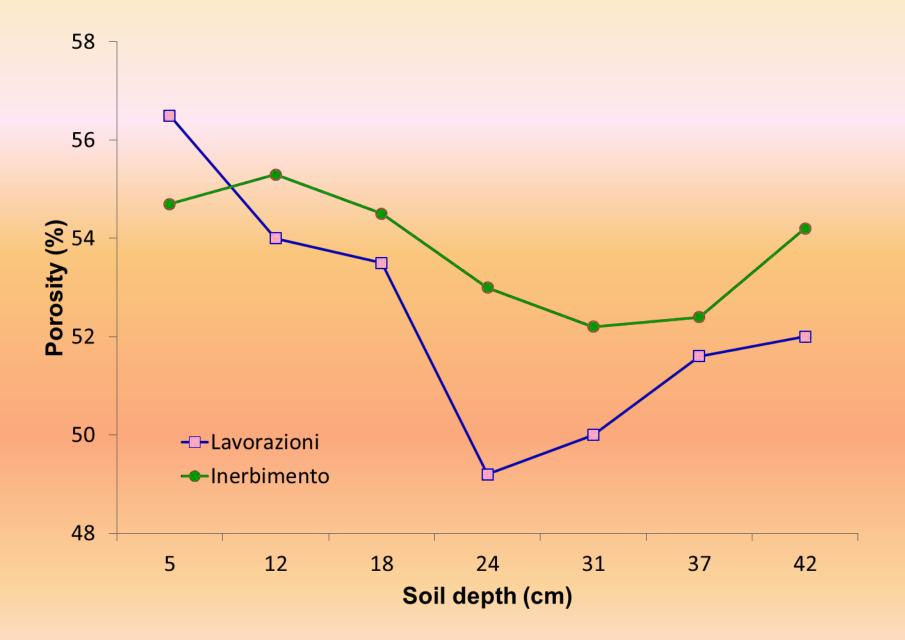
Which crops to associate with grapevines?

Many management strategies are possible for covercrops

Narrow row, thin line of grass every 2nd inter-row

Wide row, wide line of grass or total covercropping

Tillage


- Remove weeds
- Break cracks in the soil
- Break compaction layers
- Bury fertilisers
- Favor soil water intake
- Weed growth dictate number of interventions
- Easy Rewarding for the worker

- Soil structure and compaction
- Erosion (texture, slope, length)
- Deep compaction layer
- Soil fertility (i.e. organic matter)
- Vine health (wounds, trunk diseases)
- Carbon footprint and costs

Plus

Minus

Herbicides

- Low cost
- Late winter applications can replace 3-4 tillages
- Water conservation in soil
- Lower erosion as compared to tillage
- Reduced machanical damage
- Post-emergence applications leave OM onto the soil

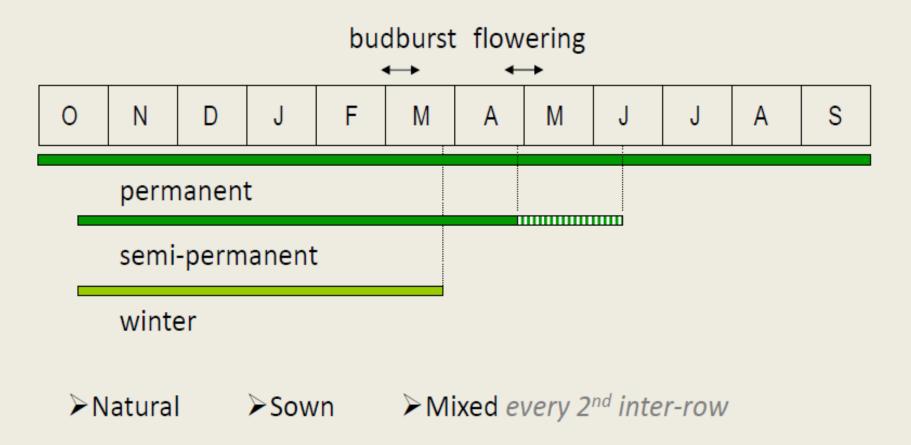
- Soil compaction
- Lower microbiological health
- Resistant weeds tend to prevail
- Possible soil and aquifers contamination
- Lower OM with pre-emergence strategy.

Plus

Minus

Mulching

Vineyard soil moisture 2001 (60-90cm)



Strategies for covercropping

example for temperate climate with winter from D to M

Covercropping typology

Vineyard Cover Cropping?

Grapevine:

A productive perrenial crop

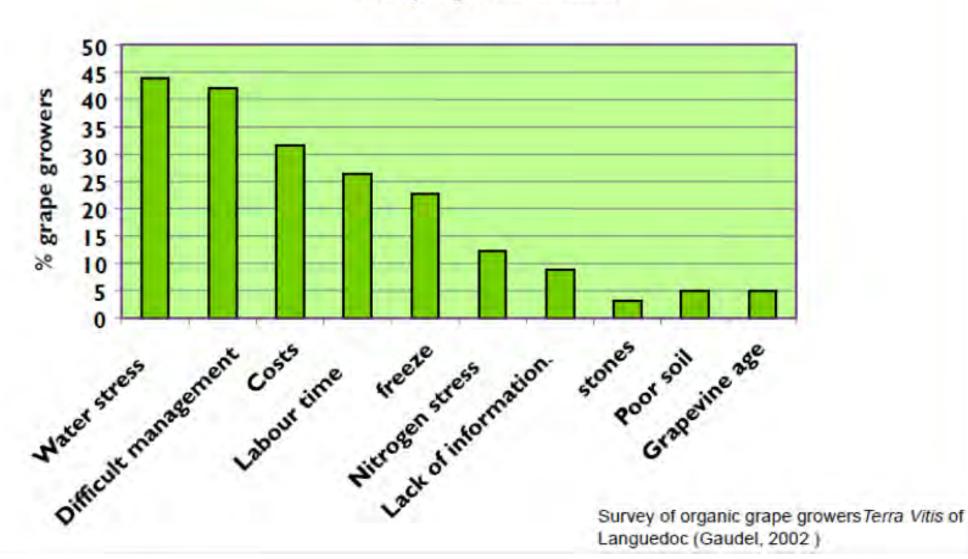
Cover crop:

A service crop

Cover Crop Typology

Species Composition:

- perrenial / annual
- rooting depth
- water & nitrogen needs
- growth period


Structure: cover crop surface

- total cover
- every inter-row
- every 2nd inter-row

Timescale Features: growth period

- permanent
- semi-permanent
- winter

Grape growers fears

Cover crop benefits:

- Prevention of erosiion and landslides.
- Better soil structure
- Higher OM and biological activity
- Better water infiltration rates
- Better fine root development
- Better grape composition
- Better alley transit
- Time and cost reducution
- Sustainable technique

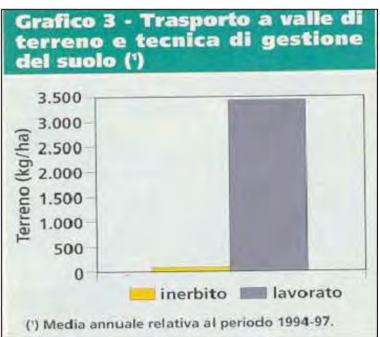
For the winegrower a cover cropped vineyard= Many New Questions to Answer?

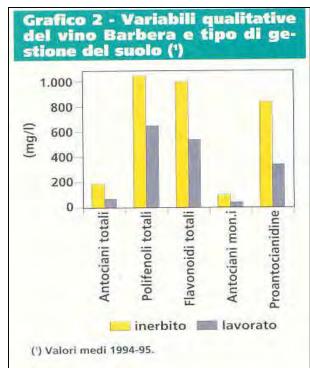
New Agronomic Design?

- natural dispersion of seed or sown by man?
- permanent, semi-permanent or seasonal?
- between the rows or covering the whole surface?

With a cover crop, what about:

- competition?
- biodiversity?
- erosion?
- runoff and nitrate leaching?


If the covercrop is leguminous: what about N balance?



Lieu	Procédés	Rende- ment kg/m²	Sucres Brix %	Acidité totale g/l "	Pourri- ture %	Bois de taille g/m² 2)	N feuilles % MS
Changins II	Travail du sol	2.01	16.8	7.8	11.7	396	2.00
	Gazon permanent	1.58	17.2	7.7	6.5	346	1.75
Pully	Travail du sol	2.04	16.9	7.6	14.1	386	1.97
	Gazon permanent	1.86	17.0	7.3	9.6	353	1.82

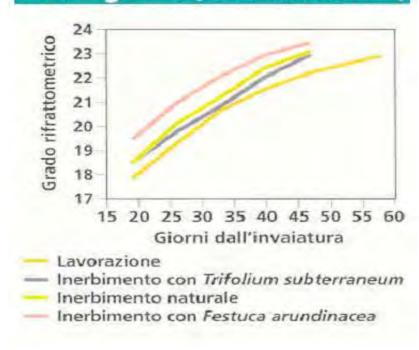
= Meno muffa grigia

Tabella 2 - Confronto tra essenze erbacee e lavorazione del suolo per macro e microcomponenti delle uve

Prod. ceppo (kg)	Zuccheri (°Brix)	Antociani totali (mg/kg)	
------------------------	---------------------	--------------------------------	--

Cabernet Sauvignon-Valcalepio (medie 1993-94)

Lollum multillorum	0,0 0	12,4 0	2.240 €	3.070 1
Bromus catarticus	6,4 b	19,1 b	2.130 c	3.560 b
Festuca arundinacea	5,0 a	18,8 ab	1.920 b	2.980 a
Trifolium repens	6,2 ab	18,4 a	1.810 b	2.900 a
	00-	1020	4 500 -	2 770 2

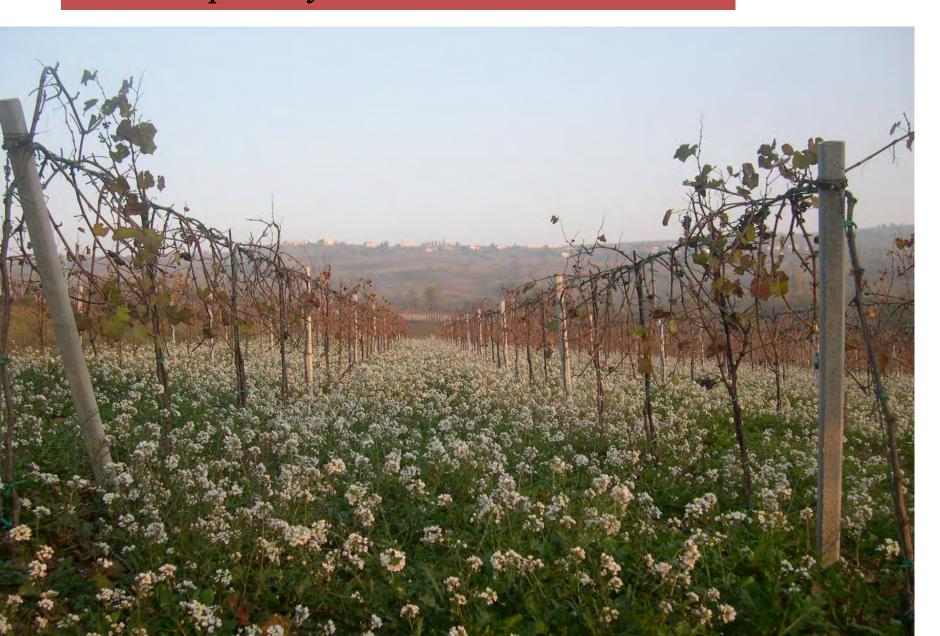

Barbera-San Colombano (medie 1996-97)

Lolium rigidum	4,6 b	22,2 bc	2.167 bc	2.918 b
Trifolium resupinatum	4,8 b	21,8 b	2.091 b	2.827 b
Bromus catarticus	4,0 a	21,9 b	2.030 b	2.744 ab
Lolium multiflorum	4,1 a	22,6 c	2.236 c	3.068 b
Suolo lavorato	5,6 c	20,5 a	1.839 a	2.531 a

A lettere diverse corrispondono differenze significative per p<0,05.

Grafico 2 - Accumulo di zuccheri in uve Sangiovese (Montalcino, Siena)

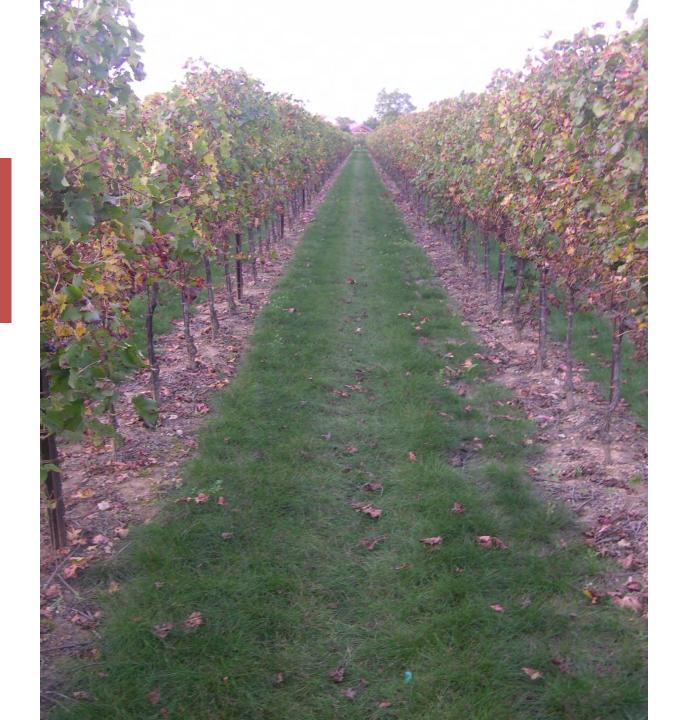
Cove crop water budget


- 500 I water/kg DM
- 30 t FW/year

```
=
6 t DW/year
=
3000 m<sup>3</sup>/year
=
300 mm of rain!!!!
```

Spontaneous cover with ray grass (Lolium multiflorum)

Sinapis alba. Cruciferae species drill the clay soil with a deep root system



Cover with rye (Secale cereale) to improve O.M. and soil portance (Tractor buoyancy)

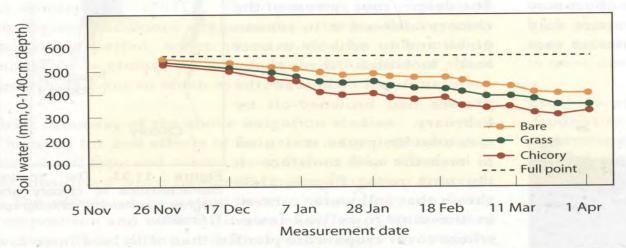
Festuca longifolia

A dwarf, low competing species

Dwarf fescue

Dwarf fescue may have low resistance to machinery trampling

Tall fescue (festuca arundinacea), for vineyard vigor control, in Po Valley



Broad bean cover to improve soil O.M.

Broad bean (*Vicia faba*) associate with oats (*Avena sativa*)

Figure 11.34 Soil water content (0-140 cm depth) in vine rows for each treatment during the 1997/98 growing season (redrawn from Figure 1 in Proffitt 2000, used with permission from Winetitles).

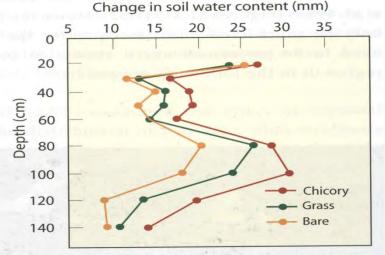
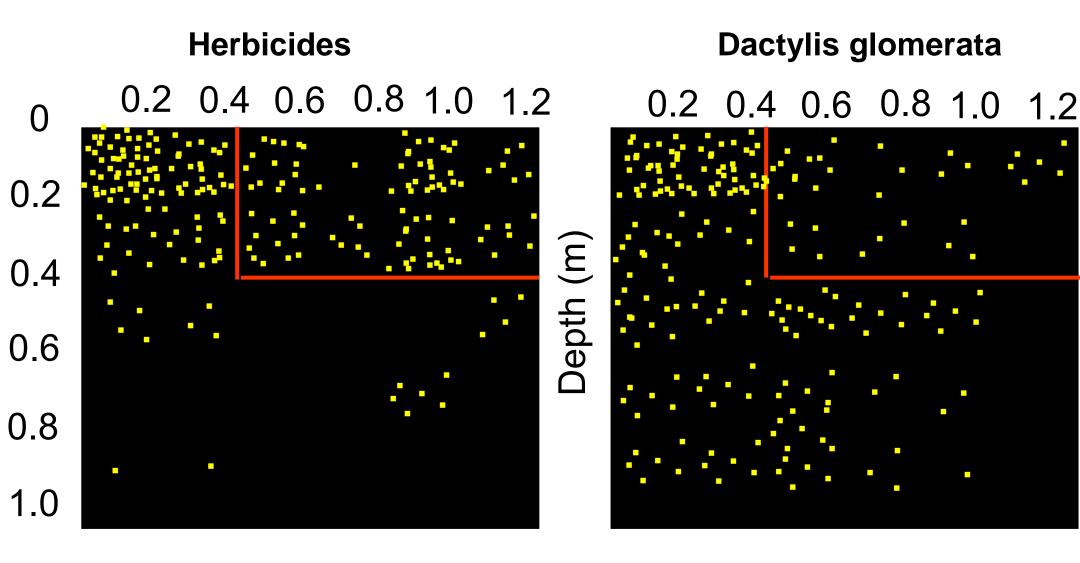
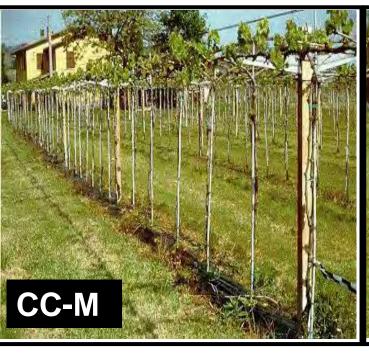



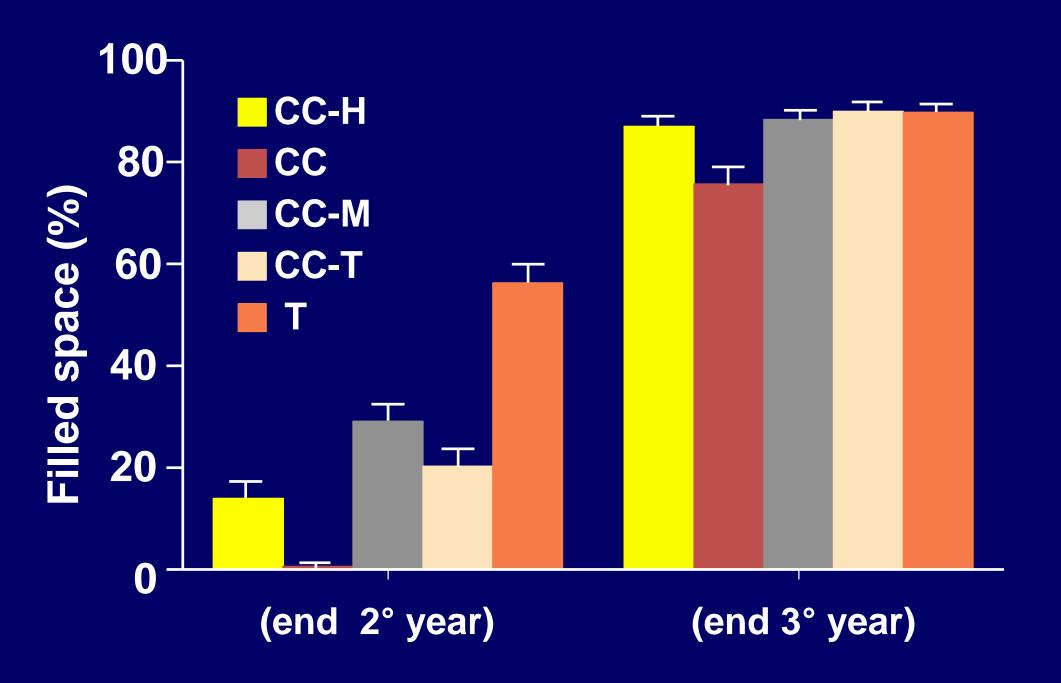
Figure 11.35 Vine water extraction for the bare soil, grass and chicory mid-row treatments (redrawn from Figure 2 in Proffitt 2000, used with permission from Winetitles).

Figure 11.36 The mid-row — (a) bare soil, (b) planted with ryegrass and cocksfoot grasses and (c) chicory (photographs T. Proffitt).

Distance from row axis (m)

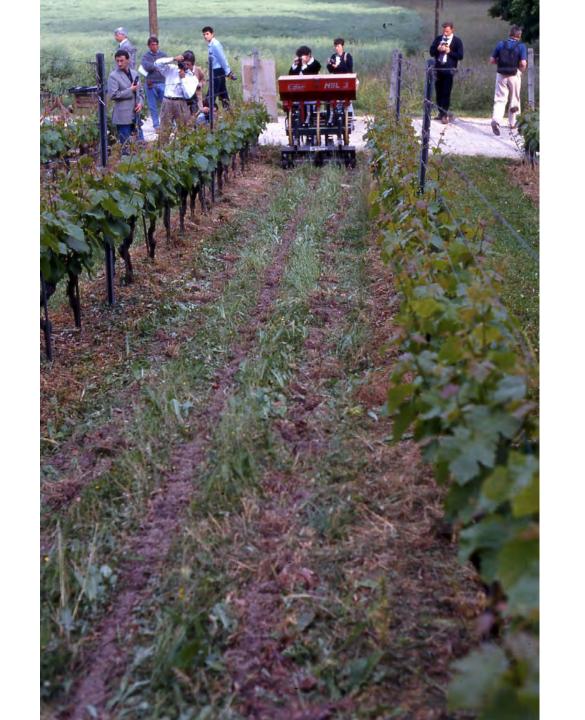

From Lopes et al., 2004. Geisenheim, Germania

Species	18h Σ 8h	LAI	Trasp.
	(1 m ⁻² LA)	$(m^2 m^{-2})$	(mm gg ⁻¹)
Medicago lupolina	1.94	1.28	2.48
Festuca rubra	0.60	1.18	0.71
Chenopodium album	2.93	0.76	2.21
Cirsium arvense	1.74	1.22	2.12
Malva neglecta	4.79	0.93	4.45
Taraxacum officinale	2.08	1.38	2.48
Grapevine	0.46	2.31	0.89



Tab. 3. Yield components. Means 1996-2000.

	Yield/m		Fert. (cl./shoot)	Clusters/ m	CW	BW (a)
	(kg)	(q)	(61./511001)		(g)	(g)
Т	4.61 a	230	1.65 a	27.0 a	171 a	2.05
LI	4.08 b	205	1.58 ab	24.3 b	167 a	2.08
PI	4.08 b	205	1.58 ab	24.8 b	164 a	2.09
DI	3.53 c	175	1.51 b	23.5 bc	146 b	2.02
II	3.34 c	165	1.54 b	22.9 c	144 b	1.99
Sig.	**	**	*	**	**	ns


Tab. 4. Grape composition and vine balance indices. Mean 1996-2000.

	TSS	TA	рН	Sugars/m	Y/PW	LA/Y
	(°Brix)	(g/l)		(g)	(kg/kg)	(m²/kg)
Т	20.5 b	6.8 a	3.39	937 a	10.1	1.09 b
CC-T	22.1 a	6.2 c	3.43	891 a	10.1	1.15 ab
CC-M	21.0 b	6.5 b	3.42	843 ab	9.7	1.31 ab
CC-H	22.2 a	6.1 c	3.44	776 b	9.6	1.51 a
CC	22.3 a	6.0 c	3.44	735 b	10.4	1.44 ab
Sig.	**	**	ns	**	ns	**

